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Abstract

In aim this paper, we introduce a new concept of quasi-normal
spaces called quasi Da-normal spaces and obtain characterizations and
preservation theorems of quasi Do-normal. The notion can be applied for
investigating many other properties.
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Introduction

In this paper, we introduce the notion of Dag-closed, Dag-open,
ngDa-closed,ngDa-open  sets,ngDa-closed, almost ngDa-closed, ngDa-
continuous and almost ngDa-continuous functions and its properties are
studied. Further we introduce a new concept of quasi-normal spaces called
quasi Da-normal spaces and obtain characterizations and preservation
theorems of quasi Da-normal.

Aim of the Study

In aim this paper, we introduce a new class of sets called Dag-

closed, ngDa-closed sets and its properties are studied and we introduce
a new concept of quasi-normal spaces called q]uasi Da-normal spaces by
using Do-open sets due to Sayed and Khalil'" in topological spaces and
obtained several characterization and preservation theorems for quasi Da-
normal spaces. We insure the existence of utility for new results using
separation axioms in topological spaces which is separate on a known
separation axioms in topological spaces.

Review of Literature

The notion of quasi normal space was introduced by Zaitsev.

Dontchev and Noiri® introduce the notion of ng-closed sets as a weak form

of g-closed sets due to Levine [6]. By using ng-closed sets, Dontchev and

Noiri [2] obtained a new characterization of quasi normal spaces. Sayed

and Khalil [11] introduced the concept of Da-closed sets and discuss some

of their basic properties. Recently, Reena et al. [8] introduced the concepts
of quasi b*-normal spaces in topological spaces by using b* open sets in
topological spaces and obtained some characterizations of such spaces.

Preliminaries

Definition

A subset A of a topological space X is called.

Regular closed [12]) If A = CI(Int(A)).

Generalized closed [4] (Briefly, g-closed) if CI(A) < U whenever A c U

and Uis openin X.

ng-closed [2] If CI(A) c U whenever A c U and U is n-open in X.

a-closed [7] If CI(Int(CI(A))) c A

ag-closed [5] If a-CI(A) c U whenever Ac U and U is in X.

nga-closed [1] If a-CI(A) c U whenever A c U and U is t-open in X.

The finite union of regular open sets is said to be m-open. The
complement of n-open set is said to be =-closed set. The complement of
regular

[13]
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closed (resp. g-closed, mn-open, mg-closed, a-closed,
og-closed, nga-closed) set is said to be regular open
(resp. g-open, m-open, ng-open, a-open, ag-open ,
nga-open) sets. The intersection of all g-closed sets
containing A is called the g-closure of A [3] and
denoted by CI*(A), and the g-interior of A [9] is the
unionof all g-open sets contained in A and is denoted
by Int*(A).

Definition

A subset A of a topological space X is called,

Da-closed [11] If CI*(Int(CI*(A))) € A .
Dag-closed If CI2(A) < Uwhenever A c U, and U is
open in X.
ngDa-closed If CI2(A) — U whenever A — U and U is
n-open in X.

The complement of Da closed (resp. Dag-
closed, ngDa-closed) sets is said to be Da-open
(resp. Dag-open, ngDa-open).The intersection of all
Da-closed subsets of X containing A (i.e. super sets
of A) is called the Da-closure of A and is denoted
byCI2(A). The union of all Da-open sets contained in
A is called Da-interior of A and is denoted by
Int2(A).The family of all Da-open ( resp. Da-closed)
sets of a space X is denoted by DaO(X) (resp.
DaC(X)).

Theorem [11].

Let X be a topological space. Then
1. Every a-closed subset of X is Da-closed.

2. Every g-open subset of X is Da-open.

We have the following implications for the
properties of subsets.

closed = g-close = ng-closed
U U U
a-closed = ag-closed = nga-closed
U
Da-closed = Dag-closed = ngDa-closed

Where none of the implications is reversible
as can be seen from the following examples
Example

Let X={a,b,c,d}and 1 ={4¢, {a}, {c, d},
{a,c,d}, {d}, {a, d}, X} Then the set A ={a}is
nga-closed set as well ngDa-closed set but not g-
closed setin X .
Example

Let X={a,b,c,d}and 1={¢, {a}, {c}, {a,
b}, {a, c}, {a, d}, {a, d, c }, {a, b, d}, {a, b, c}, X}. Then
the set A = {a, b} is mngoa-closed set as well as
ngDa-closed set but not ag-closed and not Dag-
closed set in X.Since A c {a, b, c} which is open by
CI® « {a, b, c}.
Example

Let X={a, b,c,d}and 1 ={¢, {a}, {c, d}, {a,
c, d}, {d}, {a, d}, X}. Then the set A = {c} is nga-
closed set as well as ngDa-closed set but not ng-
closed set in X.

Theorem

1. Finite union of ngDa-closed sets are ngDa-
closed.

2. Finite intersection of ngDa-closed need not be a
ngDa-closed.
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A countable union of nrgDa-closed sets need not
be a ngDa-closed.

Proof

1.

Let A and B be =ngDa-closed sets. Therefore
CI2(A)c U and CI2(B) < U whenever Ac U, B c
U and U is n-open. Let A U B c U where U is =n-
open. Since CI(A U B) c CI5(A) U CIB(B) c U,
we have A u B is ngDa-closed.

Let X ={a, b, c,d} and 1 = { ¢, {a}, {b}, {a, b}, {a,
b, c},{a, b,d}, X}. Let A={a, b, c}, B={a, b, d}.
A and B are ngDa-closed sets. ButAnB = {a,
b}={a, b} which is n-open. CI2(A n B) « {a, b}.
Hence A n B is not ngDa-closed.

Let R be the real line with the usual topology.
Every singleton is nrgDa-closed. But, A = {1/i : i =
2,3, 4 .. } is not ngDa-closed. Since
A c (0, 1) which is m-open but CI2(A) z (0, 1).

Theorem

If A is ngDa-closed and A B c CID(A) then

B is ngDa-closed.
Proof

Since A is ngDa-closed, CI2(A) < U

whenever A c U and U is n-open. Let B < U and U
be m-open. Since B < CI2(A), CI2(B) < CI2(A) < U.
Hence B is ngDa-closed.

Theorem

Let A be a mgDa-closed set in X. Then

CI2(A) — A does not contain any non empty Tr-closed
set.
Proof

that F <CI2(A) — A. Then

Therefore

Let F be a non empty m-closed set such
FcCRA) N (X-A) c X
A implies Ac X - F where X — F is t-open.

CI°(A)c X — F implies F < (CI2(A)© . Now

F < CI2(A) N (CI(A))€ implies F is empty.
Reverse implication does not hold.
Corollary

Let A be mgDa-closed. A is Da-closed iff

CI2(A) — Ais Tr-closed.

Proof. Let A be Da-closed set then A = CID(A) implies
CI2(A) — A= ¢ whichis m-closed.

Conversely if CI2(A) — A is T-closed then A is Da-
closed.

Theorem

If A is -open and mrgDa-closed. Then A is

Da-closed hence clopen.
Proof

Let A be regular open. Since A is migDa-

closed, CI2(A) c A implies A is Da-closed. Hence A is
closed (Since every m-open, Da-closed set is closed).
Therefore A is clopen.

Theorem
For a topological space X, the following are
equivalent :
1. Xis extremally disconnected.
2. Every subset of X is rgDa-closed.
3. The topology on X generated by tmgDa-closed
sets.
Proof

@ = (b). Assume X is extremally

disconnected. Let A — U, where U is 1-open in X.
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Since U is 1-open , it is the finite union of regular
open sets and X is extremally disconnected, U is
finite union of clopen sets and hence U is clopen.
Therefore CI2(A) < CI(A) < CI(U) < U implies A is
mgDa-closed.

(b) = (a). Let A be reguler open set of X.
Since A is mgDo-closed by Theorem 2.11 A is
clopen. Hence X is extremally disconnected.

(b) < (c) is obvious.
Lemma[11]

If A'is a subset of X, then
1. X - CI2(A) = Int2(X - A).

2. CI2(X - A) = X - Int2(A).
Theorem

A subset A of a topological space X is
migDa-open if F cInt?(A) whenever F is m-closed
and Fc A
Proof

Let F be 1r-closed set such that F — A. Since
X — Ais mgDa-closed and X - A < X -F we have F
c IntD(A).

Conversely, Let F ¢ IntD(A) where F is T1-
closed and F — A. Since F c A and X — F is 1r-open,
CI2(X — A) = X — Int2(A) c X — F. Therefore A is
mgDo-open.

Theorem

If, Int’(A) < B < A and A is tigDa-open
then B is TrgDo-open.
Proof

Since, Int2(A) « B < A using Theorem 2.8,
CI2(X — A) o (X — B) implies B is rgDa-open.

Remark

For any A c X, Int(CI2(A)) - A)) = ¢.
Theorem

If A < X is gDa-closed then CID(A) — A is
mgDa-open.

Proof

Let A be mgDa-closed and F be a
m-closed set such that F < CI2(A) — A. By Theorem
2.9

F = ¢ implies F c Int2(CI2(A) — A)). By
Theorem 2.14, CI2(A) - Ais migDa-open.

Converse of the above theorem is not true.
Example

Let X={a, b, c}and 1 = { ¢, {a}, {b}, {a, b},
X}. Let A={b }.Then Ais not ngDa-closed but CI2(A)
— A ={a, b} ngDa-open.

Quasi Da-normal spaces
Definition

A topological space X is said to be Da-
normal (resp. quasi Da-normal , mildly Da-normal )
if for every pair of disjoint closed (resp. T-closed,
regularly closed) subsets H, K of X, there exist
disjoint Da-open sets U, V of X such that H — U and
Kc V.

Example

Let X ={a, b, c,d}and 1= {¢, {a }, {b}.{a, b},
{a, b, c }, X}. The pair of disjoint closed subsets of X
are A = ¢ and B = {d}.Then Da-closed sets in X are
X, ¢, {a}, {b}, {c}, {d}, {c, d}, {a, d}, {b, c}.{a, c}, {b, d},
{a,c,d}, {b,c,d}. Also U={b}andV ={c, d} are
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Da-open sets such that A c U and B c V. Hence X is
Da-normal but it is not normal.
Example
Let X ={a, b,c,d}and t={4¢ {a}, {c}, {a,
ch{b, d}, {a, b, d}, {b, c, d}, X }. The pair of disjoint -
closed subsets of X are A ={a} and B = {c}. Also U =
{a} and V = {b, c, d} are open sets such that A c U
and B c V. Hence X is quasi-normal as well as quasi
Da-normal because every open set is Do-open set.
By the definitions and examples stated
above, we have the following diagram:
normality = quasi-normality =  mild-normality

U
Doa-normality = quasi Da-normality = mild Do-
normality
Theorem

For topological space X , the following are
equivalent:

a. Xis quasi Da-normal.

b. For any disjoint Tr-closed sets H and K, there
exist disjoint Dag-open sets U and V such that
HcUand K c V.

c. For any disjoint m-closed sets H and K, there
exist disjoint rgDa-open sets U and V such that
HcUandKc V.

d. For any T -closed set H and any 1r-open set V
containing H, there exist a Dag-open set U of X
suchthat H c U c CI2(U) c V.

e. For any tr-closed set H and any m-open set V
containing H, there exist a mgDa-open set U of
XsuchthatHcUc CP(U) c V.

Proof

(@) = (b), (b) = (c), (d) = (e), (c) = (d) and
() = (a). (&) = (b).

Let X be quasi Da-normal. Let H, K be
disjoint 11-closed sets of X. By assumption, there exist
disjoint Da-open sets U, V such thatH c U and K c
V. Since every Da-open set is Dag-open, U,V are
Dag-open sets such thatH c U and K c V.

(b) = (c). Let H, K be two disjoint 11 -closed
sets. By assumption, there exists Dag-open sets U
and V such that H — U and K < V. Since Dag-open
set is mrgDo-open, U and V are rgDa-open sets
such that H c U and Kc V.

(d) = (e). Let H be any T -closed set and V
be any 1 -open set containing H. By assumption,
there exist Dag-open set U of X such that H c U <
CI2(U) c V. Since every Dag-open set is TigDa-open,
there exist rgDa-open sets U of X such that Hc U <
CI2(U) c V.

(c) = (d). Let H be any m-closed set and V
be any t-open set containing H. By assumption, there
exist mgDa-open sets U and W such that H — U and
X -V c W. By Theorem 2.14, we get X -V < Int?

(W) and CI2(U) n Int2(wW) = ¢. Hence Hc U ¢ CI2
(U)c X - Int2(W) c V.
(e) = (a). Let H, K be any two disjoint 1r-closed set of

X. Then H ¢ X — K and X - K is 1 -open. By
assumption, there exist g Da-open set G of X such
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that H = G = CIP(G) « X - K. Put U = Int2(G), v = X
~ CI2(G). Then U and V are disjoint Da-open sets of

Xsuchthat HcUand K c V.

Some Functions

Definition

A function f: X —» Y is said to be

1. Almost closed [10](resp. almost Da-closed ,
almost Dag-closed ) if f (F) is closed (resp. Da-
closed , Dag-closed ) in Y for every F € RC(X).

2. mwgDa-closed (resp. almost rgDa-closed) if for
every closed set (resp. regularly closed ) F of X,
f(F) is rgDa-closed in Y.

3. N-continuous [2] (resp. mga-continuous [1],
mgDa-continuous) if f ‘1(F) is TT-closed (resp.Trgo.-
closed, mgDa-closed) in X for every closed set F
of Y.

4. Almost continuous [10] (resp. almost -
continuous [2], almost mga- continuous [1],
almost TgDa-continuous) iff"l(F) is closed (resp.
- closed, mgoa-closed, mgDa-closed) in X for
every regularly closed set F of Y.

5. Rc-preserving [6] if f(F) is regularly closed in Y
for every Fe RC(X).

From the definitions stated above, we obtain
the following diagram:

closed = oa-closed = ag-closed = Tmga-closed

U U U U
al.-closed = al.Do-closed = al. Dag-closed =al.
mgDa-closed

Where al. = almost

Moreover, by the following examples, we
realize that none of the implications is reversible.
Example

X={a,b,c,d}, 7={¢, X, {c}, {a,b,d}and o
={¢, {a}, {c,d}, {a, c,d}{d}, {a, d}, X}. Letf: (X, 1) >
(X, o) be the identity function, then f is Tga-closed
as well as mgDa-closed but not 1g-closed. Since A=
{c} is not Trg-closed in (X, o).
Example

Let X={a, b, c,d}, 1={¢, X, {c}{a, b, d}, {b,
d}, {b, c,d}, X} and o = {¢, X, {a}{c, d}, {a, c, d}, {d},
{a, d}}.Let T : (X, T) = (X, 0) be the identity function.
Then f is almost Tga-closed as well as almost
mgDa-closed but not 1gDa-closed. Since A = {a} is
not TrgDa-closed
Theorem

If £ X > Y is an almost t-continuous and
mgDa-closed function, then f(A) is tmgDa-closed in Y
for every TmgDo-closed set A of X.
Proof

Let A be any mrgDa-closed set A of X and V
be any T-open set of Y containing f(A). Since f is
almost TT-continuous, f"l(V) ism-openin Xand Acf
(V) . Therefore CI2(A) < f (V) and hence f(CI2(A))
c V. Since f is mgDa-closed, f(CI2(A)) is TTgDa-closed
in Y. And hence we obtain ClE(f(A)) < CI2 (f(CI2(A))

c V. Hence f(A) is mrgDa-closed inY.

117

RNI No. UPBIL/2012/55438 VOL. -6, ISSUE-3, February-2018

Periodic Research

Theorem

A surjection f : X Y is almost 1gDo-closed
if and only if for each subset S of Y and each U
RO(X) containing f ‘1(S) there exists a 1gDo-open
set V of Y such that S = V and f (V) < U.
Proof

Necessity, suppose that f is almost gDa-
closed. Let S be a subset of Y and U e RO(X)
containing f (S). If V = Y — f(X — U), then V is a
mgDa-open set of Y such that S — V and f ‘l(V) c U

Sufficiency, Let F be any regular closed
set of X. Thenf (Y —-f(F)) cX—Fand X-Fe
RO(X). There exists mgDa-open set V of Y such
that Y — f(F) = V and f (V) = X — F. Therefore, we
have f(F) > Y-Vand Fc X —-f (V) cf (Y -V).
Hence we obtain f(F) = Y — V and f(F) is ngDa-closed
in Y which shows that f is almost rgDa-closed.
Preservation Theorem
Theorem

If f: X > Y is an almost 1gDa-continuous,
rc-preserving injection and Y is quasi Da-normal then
X'is quasi Da-normal.
Proof

Let A and B be any disjoint T-closed sets of
X. Since f is an rc-preserving injection, f(A) and f(B)
are disjoint T-closed sets of Y. Since Y is quasi Da-
normal, there exist disjoint Da-open sets U and V of Y
such that f(A) c U and f(B) c V.

Now if G = Int(CI(U)) and H = Int(CI(V)).
Then G and H are regularly open sets such that f(A) <
G and f(B) c H. Since f is almost TrgDa-continuous,
f! (G) and f "(H) are disjoint TigDa-open sets
containing A and B which shows that X is quasi Da-
normal.
Theorem

If f: X Y is 1-continuous, almost Da-
closed surjection and X is quasi Da-normal
space then Y is Da-normal.
Proof

Let A and B be any two disjoint closed sets
of Y. Then f "}(A) and f (B) are disjoint Tr-closed sets
of X. Since X is quasi Da-normal, there exist disjoint
Da-open sets of U and V such that f _l(A) cUandf~
1(B) c V. Let G = Int(CI(V)) and H = Int(CI(V)). Then
G and H are disjoint regularly open sets of X such
that f "(A) c G and f /(B) c H. Set K = Y — f(X — G)
and L=Y —f(X-H).Then K and L are Da-open sets
of Y such that AcK BcL f K cG,f™ (L)
< H. Since G and H are disjoint, K and L are disjoint.
Since K and L are Da-open and we obtain A —Int?
(K),B cInt2(L) and [nt2(K) N Int2(L) = ¢.Therefore Y
is Da-normal.
Theorem

Let f: X — Y be an almost 1-continuous and
almost mgDa-closed surjection. If X is quasi Da-
normal space then Y is quasi Da-normal.
Proof

Let A and B be any disjoint 1r-closed sets of
Y. Since f is almost T-continuous, f ~}(A), f 7(B) are
disjoint closed subsets of X. Since X is quasi Do-



P: ISSN No. 2231-0045

E: ISSN No. 2349-9435

normal, there exist disjoint Da-open sets U and V of
X suchthat f*(A)cUandf ™ (B)cV.

Let G = Int(CI(U)) and H = Int(CI(V)). Then G
and H are disjoint regularly open sets of X such that f
“(A) = G and f (B) = H. By Theorem 4.5, there exist
mgDa-open sets K and L of Y such that A c K, B c L,
f 'K) = Gand f L) = H. Since G and H are
disjoint, so are K and L by Theorem 2.14, A c Int?
(K), B c Int2(L) and Int?(K) " nt2(L ) = ¢. Therefore
Y is quasi Da-normal.
Corollary

If f: X > Y is almost continuous and almost
closed surjection and X is a normal space, then Y is
quasi Da-normal.
Proof

Since every almost closed function is almost
mgDa-closed so Y is quasi Da-normal.

Conclusion
The notion of quasi Da-normal in topological
spaces has been (generalized and obtain

characterizations and preservation theorems of quasi

Da-normal.
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